Halaman

Selasa, 17 November 2009

Climate Chage Video

Tornado Destructiion

Global Climate Change



Pengertian perubahan iklim

Yang dimaksud dengan perubahan iklim adalah perubahan variabel iklim, khususnya suhu udara dan curah hujan yang terjadi secara berangsur-angsur dalam jangka waktu yang panjang antara 50 sampai 100 tahun (inter centenial). Disamping itu harus dipahami bahwa perubahan tersebut disebabkan oleh kegiatan manusia (anthropogenic), khususnya yang berkaitan dengan pemakaian bahan bakar fosil dan alih-guna lahan. Jadi perubahan yang disebabkan oleh faktor-faktor alami, seperti tambahan aerosol dari letusan gunung berapi, tidak diperhitungkan dalam pengertian perubahan iklim. Dengan demikian fenomena alam yang menimbulkan kondisi iklim ekstrem seperti siklon yang dapat terjadi di dalam suatu tahun (inter annual) dan El-Nino serta La-Nina yang dapat terjadi di dalam sepuluh tahun (inter decadal) tidak dapat digolongkan ke dalam perubahan iklim global.
Kegiatan manusia yang dimaksud adalah kegiatan yang telah menyebabkan peningkatan konsentrasi GRK di atmosfer, khususnya dalam bentuk karbon dioksida (CO2), metana (CH4), dan nitrous oksida (N2O). Gas-gas inilah yang selanjutnya menentukan peningkatan suhu udara, karena sifatnya yang seperti kaca, yaitu dapat meneruskan radiasi gelombang-pendek yang tidak bersifat panas, tetapi menahan radiasi gelombang-panjang yang bersifat panas seperti terlihat pada Gambar 1. Akibatnya atmosfer bumi makin memanas dengan laju yang setara dengan laju perubahan konsentrasi GRK.

Pertumbuhan emisi dan konsentrasi gas rumahkaca

Menurut IPCC (2001) dalam dekade terakhir ini pertumbuhan CO2 adalah sebesar 2900 juta ton/tahun, sementara pada dekade sebelumnya adalah sebesar 1400 juta ton/tahun. Sedang CH4 justru mengalami penurunan dari 37 juta ton/tahun pada dekade terdahulu menjadi 22 juta ton/tahun pada dekade terakhir. Demikian pula halnya dengan N2O meskipun kecil juga mengalami penurunan dari 3,9 menjadi 3,8 juta ton/tahun. Sementara itu tingkat emisi CO2, CH4, dan N2O di Indonesia pada tahun 1994 berturut-turut adalah 952.199, 4.286, dan 61 Gg (Tabel 1).

Gambar 1. Gas rumahkaca yang menyelimuti atmosfer bumi akan menyerap radiasi gelombang panjang yang memanaskan bumi (Sumber: UNEP/WMO, 1996)

Uap air (H2O) pun sebenarnya merupakan GRK yang dapat dirasakan pengaruhnya ketika menjelang turun hujan. Udara terasa panas karena radiasi gelombang-panjang tertahan uap air atau mendung yang menggantung di atmosfer. Namun demikian karena keberadaan (life time) H2O sangat singkat (2-3 hari), maka uap air bukanlah GRK yang efektif. Sementara itu untuk CO2, CH4, dan N2O keberadaannya di atmosfer berturut-turut adalah 100, 15, dan 115 tahun.

Tabel 1. Emisi GRK Indonesia dari berbagai sektor pada tahun 1994 (Gg)

Peningkatan suhu bumi

Dalam 100 tahun terakhir suhu bumi terlihat mulai ditentukan oleh peningkatan CO2 di atmosfer. Pada zaman pra-industri (sebelum tahun 1850) konsentrasi CO2 masih sekitar 290 ppm, sedang pada tahun 1990 konsentrasinya telah meningkat menjadi 353 ppm. Peningkatan suhu rata-rata bumi sebesar 0,5 oC telah dicatat. Dengan pola konsumsi energi dan pertumbuhan ekonomi seperti sekarang, maka diperkirakan pada tahun 2100 konsentrasi CO2 akan meningkat dua kali lipat dibanding zaman industri, yaitu sekitar 580 ppm. Dalam kondisi demikian berbagai model sirkulasi global memperkirakan peningkatan suhu bumi antara 1,7-4,5 oC (Gambar 2). Peningkatan yang besar terjadi pada daerah lintang tinggi, sehingga akan menimbulkan berbagai perubahan lingkungan global yang terkait dengan pencairan es di kutub, distribusi vegetasi alami dan keanekaragaman hayati, produktivitas tanaman, distribusi hama dan penyakit tanaman dan manusia.

Perubahan pola dan distribusi hujan

Pola dan distribusi curah hujan terjadi dengan kecenderungan bahwa daerah kering akan menjadi makin kering dan daerah basah menjadi makin basah. Konsekuensi-nya adalah bahwa kelestarian sumberdaya air juga akan terganggu. Di Indonesia dikenal 3 macam pola distribusi hujan, yaitu pola monsun (monsoonal), ekuatorial dan lokal. Pertama, daerah yang sangat dipengaruhi oleh monsun memiliki pola hujan dengan satu pucak (unimodal). Ciri dari pola ini adalah adanya musim hujan dan kemarau yang tajam dan masing-masing berlangsung selama kurang lebih 6 bulan, yaitu Oktober - Maret sebagai musim hujan dan April – September sebagai musim kemarau. Kedua, daerah yang dekat dengan ekuator dipengaruhi oleh sistem ekuator dengan pola hujan yang memiliki dua puncak (bimodal), yaitu pada bulan Maret dan Oktober saat matahari berada di dekat ekuator. Ketiga, daerah dengan pola hujan lokal, dicirikan oleh bentuk pola hujan unimodal dengan puncak yang terbalik dibandingkan dengan pola hujan monsun yang disebutkan di atas. Perubahan iklim (khususnya suhu dan curah hujan) tidak hanya menyebabkan perubahan volume defisit atau surplus air, tetapi juga periode daerah itu mengalami surplus atau defisit. Dalam suatu studi hidrologi daerah aliran sungai (DAS) di daerah ekuatorial seperti Sulawesi, perubahan iklim (dengan konsentrasi CO2 atmosfer 2 kali lipat dibanding konsentrasi pada zaman pra-industri yang hanya 280 ppm) akan menyebabkan DAS tersebut tidak mengalami defisit sementara surplusnya meningkat dua kali lipat. Sedang DAS di daerah monsun seperti Jawa, surplus air hanya sekitar 30% dengan periode defisit yang lebih pendek dibanding jika iklim tidak berubah (Murdiyarso, 1994).

Dampak perubahan iklim

Sektor pertanian akan terpengaruh melalui penurunan produktivitas pangan yang disebabkan oleh peningkatan sterilitas serealia, penurunan areal yang dapat diirigasi dan penurunan efektivitas penyerapan hara serta penyebaran hama dan penyakit. Di beberapa tempat di negara maju (lintang tinggi) peningkatan konsentrasi CO2 akan meningkatkan produktivitas karena asimilasi meningkat, tetapi di daerah tropis yang sebagian besar negara berkembang, peningkatan asimilasi tersebut tidak signifikan dibanding respirasi yang juga meningkat. Secara keseluruhan jika adaptasi tidak dilakukan, dunia akan mengalami penurunan produksi pangan hingga 7 persen. Namun dengan adaptasi yang tingkatnya lanjut, artinya biayanya tinggi, produksi pangan dapat distabilkan. Dengan kata lain stabilisasi produksi pangan pada iklim yang berubah akan memakan biaya yang sangat tinggi, misalnya dengan meningkatkan sarana irigasi, pemberian input (bibit, pupuk, insektisida/pestisida) tambahan. Di Indonesia dengan skenario konsentrasi CO2 dua kali lipat dari saat ini produksi padi akan meningkat hingga 2,3 persen jika irigasi dapat dipertahankan. Tetapi jika sistem irigasi tidak mengalami perbaikan produksi padi akan mengalami penurunan hingga 4,4 persen (Matthews et al., 1995).

Suhu yang lebih hangat akan menyebabkan pergeseran spesies vegetasi dan ekosistem. Daerah pegunungan akan kehilangan banyak spesies vegetasi aslinya dan digantikan oleh spesies vegetasi dataran rendah. Bersamaan dengan itu kondisi sumberdaya air yang berasal dari pegunungan juga akan mengalami gangguan. Selanjutnya stabilitas tanah di daerah pegunungan juga terganggu dan sulit mempertahankan keberadaan vegetasi aslinya. Dampak ini tidak begitu nyata di daerah lintang rendah atau daerah berelevasi rendah. Jika kebakaran hutan makin sering dijumpai di Indonesia, agak sulit menghubungkan antara kejadian tersebut dengan perubahan iklim, sebab sebagian besar (kalau tidak seluruhnya) kejadian kebakaran hutan disebabkan oleh aktivitas manusia yang berkaitan dengan pembukaan lahan. Bahwa kejadiannya bersamaan dengan kejadian El-Nino karena fenomena ini memberikan kondisi cuaca yang kering yang mempermudah terjadinya kebakaran. Namun seperti diuraikan di atas El-Nino adalah fenomena alam yang terkait dengan peristiwa iklim ekstrem dalam variabilitas iklim, bukan perubahan iklim dalam arti seperti yang diuraikan di atas. Meningkatnya jumlah penduduk memberikan tekanan pada penyediaan air, terutama pada daerah perkotaan. Saat ini sudah banyak penduduk perkotaan yang mengalami kesulitan mendapatkan air bersih, terutama mereka yang berpendapatan dan berpendidikan atau berketerampilan rendah. Dampak perubahan iklim yang menyebabkan perubahan suhu dan curah hujan akan memberikan pengaruh terhadap ketersediaan air dari limpasan permukaan, air tanah dan bentuk reservoir lainnya. Pada tahun 2080 akan terdapat 2 hingga 3,5 milyar orang akan mengalami kekurangan air. Pada beberapa daerah aliran sungai (DAS) penting di Indonesia ketersediaan air permukaan diperkirakan akan meningkat karena meningkatnya suplus dan menurunnya defisit. Di DAS Citarum, Jawa Barat peningkatan tersebut mencapai 32%, di DAS Brantas Jawa Timur 34%, dan di DAS Saadang, Sulawesi Selatan 132% (Murdiyarso, 1994).

Sebagai konsekuensinya kejadian banjir akan meningkat karena menurunnya daya tampung sungai akibat peningkatan limpasan permukaan dan menurunnya daya tampung sungai dan waduk akibat peningkatan erosi dan sedimentasi. Secara global catatan bencana banjir menunjukkan peningkatan yang signifikan selama 40 tahun terakhir dengan kerugian ekonomis ditaksir sekitar US$ 300 milyar pada dekade terakhir dibanding hanya US$ 50 milyar pada dekade tahun 1960-an. Kawasan pesisir merupakan daerah yang paling rentan dari akibat kenaikan muka-laut. Dalam 100 tahun terakhir, mukalaut telah naik antara 10-25 cm. Meskipun kenyataannya sangat sulit mengukur perubahan muka-laut, tetapi perubahan tersebut dapat dihubungkan dengan peningkatan suhu yang selama ini terjadi. Dalam 100 tahun perubahan suhu telah meningkatkan pemuaian volume air laut dan meningkatkan ketinggiannya. Demikian juga penambahan volume air laut juga terjadi akibat melelehnya gletser dan es di kedua kutub bumi. Dari berbagai skenario, peningkatan tersebut berkisar antara 13 hingga 94 cm dalam 100 tahun mendatang. Dengan panjang pantainya yang lebih dari 80.000 km, di mana lebih dari 50 persen diantaranya merupakan pantai landai,

Indonesia cukup rentan terhadap kenaikan muka-laut seperti negara-negara yang berpantai landai seperti Bangladesh. Kenaikan muka laut hingga 1,5 m dapat berpengaruh terhadap 17 juta penduduk Bangladesh. Tetapi hanya dengan kenaikan 1 m dampak sosial-ekonomi terhadap pertanian pantai di beberapa kabupaten di Jawa Barat bagian utara sudah sangat besar (Parry et al., 1992).Transmisi beberapa penyakit menular sangat dipengaruhi oleh faktor-faktor iklim. Parasit dan vektor penyakit sangat peka terhadap faktor-faktor iklim, khususnya suhu dan kelembaban. Penyakit yang tersebar melalui vektor (vector-borne diseases,VBDs) seperti malaria, demam berdarah (dengeue) dan kaki gajah (schistosomiosis) perlu diwaspadai karena transmisi penyakit seperti ini akan makin meningkat dengan perubahan iklim. Di banyak negara tropis penyakit ini merupakanpenyebab kematian utama.

IPCC (1998) memperkirakan bahwa dengan makin lebarnya selang suhu di mana vektor dan parasit penyakit dapat hidup telah menyebabkan peningkatan jumlah kasus malaria di Asia hingga 27 persen, demam berdarah hingga 47 persen dan kaki gajah hingga 17 persen. Di Indonesia daerah-daerah baru yang menjadi semakin hangat juga memberi kesempatan penyebaran vektor dan parasitnya. Penjangkitan VBD bahkan terjadi lagi di daerah-daerah lama yang selama ini sudah dinyatakan bebas. Hal ini disebabkan karena penggunaan bahan kimia dalam jangka panjang telah menimbulkan daya tahan vektor. Disamping itu predator bagi vektor tersebut juga ikut terbasmi.
Terakhir diperbaharui ( Jumat, 15 Oktober 2004 )

Selasa, 10 November 2009

No Doomsday in 2012

Apparently, the world is going to end on December 21st, 2012. Yes, you read correctly, in some way, shape or form, the Earth (or at least a large portion of humans on the planet) will cease to exist. Stop planning your careers, don't bother buying a house, and be sure to spend the last years of your life doing something you always wanted to do but never had the time. Now you have the time, four years of time, to enjoy yourselves before… the end.
So what is all this crazy talk? We've all heard these doomsday predictions before, we're still here, and the planet is still here, why is 2012 so important? Well, the Mayan calendar stops at the end of the year 2012, churning up all sorts of religious, scientific, astrological and historic reasons why this calendar foretells the end of life as we know it. The Mayan Prophecy is gaining strength and appears to be worrying people in all areas of society. Forget Nostradamus, forget the Y2K bug, forget the credit crunch, this event is predicted to be huge and many wholeheartedly believe this is going to happen for real.
Planet X could even be making a comeback.

For all those 2012 Mayan Prophecy believers out there, I have bad news. There is going to be no doomsday event in 2012, and here's why…
The Mayan CalendarSo what is the Mayan Calendar? The calendar was constructed by an advanced civilization called the Mayans around 250-900 AD. Evidence for the Maya empire stretches around most parts of the southern states of Mexico and reaches down to the current geological locations of Guatemala, Belize, El Salvador and some of Honduras. The people living in Mayan society exhibited very advanced written skills and had an amazing ability when constructing cities and urban planning. The Mayans are probably most famous for their pyramids and other intricate and grand buildings. The people of Maya had a huge impact on Central American culture, not just within their civilization, but with other indigenous populations in the region. Significant numbers of Mayans still live today, continuing their age-old traditions.
The Mayans used many different calendars and viewed time as a meshing of spiritual cycles. While the calendars had practical uses, such as social, agricultural, commercial and administrative tasks, there was a very heavy religious element. Each day had a patron spirit, signifying that each day had specific use. This contrasts greatly with our modern Gregorian calendar which primarily sets the administrative, social and economic dates.

Most of the Mayan calendars were short. The Tzolk'in calendar lasted for 260 days and the Haab' approximated the solar year of 365 days. The Mayans then combined both the Tzolk'in and the Haab' to form the "Calendar Round", a cycle lasting 52 Haab's (around 52 years, or the approximate length of a generation). Within the Calendar Round were the trecena (13 day cycle) and the veintena (20 day cycle). Obviously, this system would only be of use when considering the 18,980 unique days over the course of 52 years. In addition to these systems, the Mayans also had the "Venus Cycle". Being keen and highly accurate astronomers they formed a calendar based on the location of Venus in the night sky. It's also possible they did the same with the other planets in the Solar System.
Using the Calendar Round is great if you simply wanted to remember the date of your birthday or significant religious periods, but what about recording history? There was no way to record a date older than 52 years.
The end of the Long Count = the end of the Earth?The Mayans had a solution. Using an innovative method, they were able to expand on the 52 year Calendar Round. Up to this point, the Mayan Calendar may have sounded a little archaic – after all, it was possibly based on religious belief, the menstrual cycle, mathematical calculations using the numbers 13 and 20 as the base units and a heavy mix of astrological myth. The only principal correlation with the modern calendar is the Haab' that recognised there were 365 days in one solar year (it's not clear whether the Mayans accounted for leap years). The answer to a longer calendar could be found in the "Long Count", a calendar lasting 5126 years.
I'm personally very impressed with this dating system. For starters, it is numerically predictable and it can accurately pinpoint historical dates. However, it depends on a base unit of 20 (where modern calendars use a base unit of 10). So how does this work?

The base year for the Mayan Long Count starts at "0.0.0.0.0". Each zero goes from 0-19 and each represent a tally of Mayan days. So, for example, the first day in the Long Count is denoted as 0.0.0.0.1. On the 19th day we'll have 0.0.0.0.19, on the 20th day it goes up one level and we'll have 0.0.0.1.0. This count continues until 0.0.1.0.0 (about one year), 0.1.0.0.0 (about 20 years) and 1.0.0.0.0 (about 400 years). Therefore, if I pick an arbitrary date of 2.10.12.7.1, this represents the Mayan date of approximately 1012 years, 7 months and 1 day.
This is all very interesting, but what has this got to do with the end of the world? The Mayan Prophecy is wholly based on the assumption that something bad is going to happen when the Mayan Long Count calendar runs out. Experts are divided as to when the Long Count ends, but as the Maya used the numbers of 13 and 20 at the root of their numerical systems, the last day could occur on 13.0.0.0.0. When does this happen? Well, 13.0.0.0.0 represents 5126 years and the Long Count started on 0.0.0.0.0, which corresponds to the modern date of August 11th 3114 BC. Have you seen the problem yet? The Mayan Long Count ends 5126 years later on December 21st, 2012.
DoomsdayWhen something ends (even something as innocent as an ancient calendar), people seem to think up
the most extreme possibilities for the end of civilization as we know it. A brief scan of the internet will pull up the most popular to some very weird ways that we will, with little logical thought, be wiped off the face of the planet. Archaeologists and mythologists on the other hand believe that the Mayans predicted an age of enlightenment when 13.0.0.0.0 comes around; there isn't actually much evidence to suggest doomsday will strike. If anything, the Mayans predict a religious miracle, not anything sinister.
Myths are abound and seem to be fuelling movie storylines. It looks like the new Indiana Jones and the Kingdom of the Crystal Skull is even based around the Mayan myth that 13 crystal skulls can save humanity from certain doom. This myth says that if the 13 ancient skulls are not brought together at the right time,
the Earth will be knocked off its axis. This might be a great plotline for blockbuster movies, but it also highlights the hype that can be stirred, lighting up religious, scientific and not-so-scientific ideas that the world is doomed.

Some of the most popular space-based threats to the Earth and mankind focus on Planet X wiping most life off the planet, meteorite impacts, black holes, killer solar flares, Gamma Ray Bursts from star systems, a rapid ice age and a polar (magnetic) shift. There is so much evidence against these things happening in 2012, it's shocking just how much of a following they have generated. Each of the above "threats" needs their own devoted article as to why there is no hard evidence to support the hype.